PHYSICS LECTURE

Muhammad Hafeez Javed
www.rmhjaved.com
rmhjaved@gmail.com

Great People who Contributed in the Development of Electronics

624-547 BC

1736-1806

THALES -. Wrote about the attraction of straw and dust to fossilized tree sap called amber (amber is the greek word for electron)

CHARLES COULOMB-. Discovered the force between electrically charged objects. The unit of electric charge is coulomb.

History of Electronics

HANS OERSTED - Determined that magnetic field is present when current flows in a wire. Oersted is one unit of magnetism.

$$
H(\mathrm{Oe})=\frac{1000}{4 \pi} \frac{I(\mathrm{~A})}{l(\mathrm{~m})}
$$ electricity is produced when two different metals are in contact with moistened cloth. The Volt is the unit of potential difference

History of Electronics

ANDREW AMPERE - Discovered the correct theory of electromagnetic force.

AMPERE is the unit of current.

MICHAEL FARADAY- Discovered the principle of electromagnetic induction Invented the electric motor.

FARAD is the unit of capacitance.

History of Electronics

1856-1940

GEORGE OHM - Determined the relationship between current and voltage in an electric circuit .

OHM is the unit of resistance.
J.J. THOMPSON - Discovered the electron. The study of the flow of electrons and its uses is called electronics.

He won the nobel prize for Physics in 1906

History of Electronics

THOMAS ALVA EDISON - Invented the incandescent lamp, phonograph and early film projector

Patented 1093 inventions.

SAMUEL MORSE - Invented the telegraph and the code that bears his name.

Sent the first telegraph message in 1844

History of Electronics

GUGLIELMO MARCONI - Developed the first practical inventions in radio telegraphy over long distances.
Received the first trans-atlantic radio signal in 1901.
Received the nobel prize for Physics in 1908

AMBROISE FLEMING AND LEE DE

 FOREST- Invented the vacuum tube In 1902 . Lee de Forest developed the vacuum tube amplifier in 1906.

History of Electronics

Nick Holonyak, Jr. - invented the first visiblespectrum LED in 1962 while working as a consulting scientist at a General Electric Company laboratory in Syracuse, New

orsic Electronics I

Objectives
-Define basic components of electricity
-Recognize the 3 electrical classifications of materials
-Compare and contrast AC vs. DC
-Explain the concept of grounding
-Use Ohm's law and Watt's law to express the relationship between current, voltage, and resistance

Electricity can be broken down into:

- Electric Charge
- Voltage
- Current
- Resistance

Negative \& Positive Charges

- What do the effects of electricity in TV, radio, a battery, and lightening all have in common?
- Basic particles of electric charge with opposite polarities.

Electrons

- The smallest amount of electrical charge having the quality called negative polarity.
- Electrons orbit the center of atoms.

Protons

- The proton is a basic particle with positive polarity.
- Protons are located in the nucleus of atoms along with neutrons, particles which have neutral polarity.

Illustration of the Atomic Structures of Hydrogen and Helium Key: electrons (c), protons and neutrons

- Copyright © 2001, Visionleaming, Hx.	Copyright © 2001 , Visionleaming, Huc.
Hydrogen $\mathrm{z}=1 \text {, mass }=1$	Helium $\mathrm{z}=2 \text {, mass }=4$

Electrically, all materials fall into 1 of 3 classifications:

- Conductors
- Insulators
- Semi-Conductors

Conductors

- Have 1 valence electron
- Materials in which electrons can move freely from atom to atom are called conductors.
- In general all metals are good conductors.
- The purpose of conductors is to allow electrical current to flow with minimum resistance.

Insulators

- Have 8 valence electrons
- Materials in which electrons tend to stay put and do not flow easily from atom to atom are termed insulators.
- Insulators are used to prevent the flow of electricity.
- Insulating materials such as glass, rubber, or plastic are also called dielectrics, meaning they can store charges.
- Dielectric materials are used in components like capacitors which must store electric charges.

Semi-Conductors

- Have 4 valence electrons

■ Materials which are neither conductors nor insulators

- Common semi conductor materials are carbon, germanium and silicone.
- Used in components like transistors

The Symbol for Charge

- The symbol for charge is Q which stands for quantity.
- The practical unit of charge is called the coulomb (C).
- One coulomb is equal to the amount of charge of 6.25×10^{18} electrons or protons stored in a dielectric.

Voltage

- Potential refers to the the possibility of doing work.
- Any charge has the potential to do the work of attracting a similar charge or repulsing an opposite charge.
- The symbol for potential difference is E (for electromotive force)
- The practical unit of potential difference is the volt (V)
- 1 volt is a measure of the amount of work required to move 1C of charge

Current

- When a charge is forced to move because of a potential difference (voltage) current is produced.
- In conductors - free electrons can be forced to move with relative ease, since they require little work to be moved.
- So current is charge in motion.
- The more electrons in motion the greater the current.

Amperes

- Current indicates the intensity of the electricity in motion. The symbol for current is I (for intensity) and is measured in amperes.
- The definition of current is: $I=Q / T$
- Where I is current in amperes, Q is charge in coulombs, and T is time in seconds.

Resistance

- Opposition to the flow of current is termed resistance.
- The fact that a wire can become hot from the flow of current is evidence of resistance.
- Conductors have very little resistance.
- Insulators have large amounts of resistance.

Ohms

- The practical unit of resistance is the ohm designated by the Greek letter omega: Ω
- A resistor is an electronic component designed specifically to provide resistance.

Closed Circuits

- In applications requiring the use of current, electrical components are arranged in the form of a circuit.
- A circuit is defined as a path for current flow.

Common Electronic Cammanant Cumbaln

ξ RESISTOR

Open Circuits

An Open Circuit

Current can only exist where there is a conductive path (e.g. A length of wire). In the circuit shown in Figure 4-6, I= $0 \frac{+}{T} \quad \mathbf{R}=$ since there is no conductor between points $a \& b$. We referred to this is an open circuit.

Fig 4-6 $\begin{aligned} & \text { An open circuit has } \\ & \text { infinite resistance }\end{aligned}$

The Circuit is a Load on the Voltage Source

- The circuit is where the energy of the source (battery) is carried by means of the current through the the various components.
- The battery is the source, since it provides the potential energy to be used.
- The circuit components are the load resistance - they determines how much current the source will produce.

Direction of Electron Flow

- The direction of electron flow in our circuit is from the negative side of the battery, through the load resistance, back to the positive side of the battery.
- Inside the battery, electrons move to the negative terminal due to chemical action, maintaining the potential across the leads.

Electron Flow in a Simple Circ.ıit

- Circuits that are powered by battery sources are termed direct current circuits.
- This is because the battery maintains the same polarity of output voltage. The plus and minus sides remain constant.

Waveform of DC Voltage

$$
\underset{0}{\text { Voltage }} \frac{\prod_{D C}}{\text { Time } \longrightarrow}
$$

4.1a Steady Voltage

Characteristics of DC

- It is the flow of charges in just one direction and...
- The fixed polarity of the applied voltage which are characteristics of DC circuits

AC

- An alternating voltage source periodically alternates or reverses in polarity.
- The resulting current, therefore, periodically reverses in direction.
- The power outlet in your home is 60 cycle ac - meaning the voltage polarity and current direction go through 60 cycles of reversal per second.
- All audio signals are AC also.

Waveform of AC Voltage

4.1b Sinewave Voltage

Complex Voltage

This is a more realistic view of what
an audio signal's voltage would look like

Comparison of DC \& AC

DC Voltage	AC Voltage
Fixed polarity	Reverses polarity
Can be steady or vary in magnitude	Varies in magnitude between reversals in polarity
Steady value cannot be stepped up or down by a transformer	Used for electrical power distribution
Electrode voltage for tube and transistor amps	l/O signal for tube and transistor amps
Easier to measure	Easier to amplify

Heating Effects the same for both AC and DC current

Many Circuits Include both AC \& DC Voltages

- DC circuits are usually simpler than AC circuits.
- However, the principles of DC circuits also apply to AC circuits.

Impedance

- Impedance is resistance to current flow in AC circuits and its symbol is Z .
- Impedance is also measured in ohms.

Grounding

- In the wiring of practical circuits one side of the voltage source is usually grounded for safety.
- For 120 V - ac power lines in homes this means one side of the voltage source is connected to a metal cold water pipe.
- For electronic equipment, the ground just indicates a metal chassis, which is used as a common return for connections to the source.

Common Symbols/ Names for Ground in Electric Circuits

Ohm' s Law

- The amount of current in a circuit is dependent on its resistance and the applied voltage. Specifically I = E/R
- If you know any two of the factors E, I, and R you can calculate the third.
- Current I = E/R
- Voltage $E=I R$
- Resistance R = E/I

Current is Directly Proportional to Voltage for a Constant Resistance OHM's LAW

Current is Inversely Proportional to Resistance for a Constant Voltage OHM's LAW

Power

- The unit of electrical power is the watt.
- Power is how much work is done over time.
- One watt of power is equal to the work done in one second by one volt moving one coulomb of charge. Since one coulomb a second is an ampere:
- Power in watts = volts x amperes
- $P=E x I$

3 Power Formulas

- $P=E \times I$
- $P=I^{2 \times R}$

■ $P=E^{2} / R$

Conversion Factors

Prefix	Symbol	Relation to basic unit	Examples
Mega	M	$1,000,000$ or 1×10^{6}	$5 \mathrm{M} \Omega=$ $5 \times 10^{6} \Omega$
Kilo	k	1,000 or 1×10^{3}	$18 \mathrm{kV} \equiv$ $18 \times 10^{3} \mathrm{~V}$
Milli	m	.001 or 1×10^{-3}	$48 \mathrm{~mA}=$ $48 \times 10^{-3} \mathrm{~A}$
Micro	μ	.000001 or 1×10^{-6}	$15 \mu \mathrm{~V} \equiv$ $15 \times 10^{-6} \mathrm{~V}$

